av免费在线-av免费在线播放网址-av免费在线观看的网址-av免费在线观看一区二区三区-av喷水高潮喷水在线观看-av喷水高潮喷水在线观看c

阻燃防火材料-網上貿易平臺 | | WAP瀏覽
服務熱線:4006555305
當前位置: 首頁 » 防火測試中心 » 各國標準法規 » 美國 » 正文

ASTM D3338航空燃料燃燒的有效熱估算的標準試驗方法

放大字體  縮小字體 發布日期:2012-02-08   瀏覽次數:344  分享到: 分享到騰訊微博
ASTM D3338航空燃料燃燒的有效熱估算的標準試驗方法
ASTM D3338 Standard Test Method for Estimation of Net Heat of Combustion of Aviation Fuels
ASTM D3338航空燃料燃燒的有效熱估算的標準試驗方法

This test method is intended for use as a guide in cases where experimental determination of heat of combustion is not available and cannot be made conveniently and where an estimate is considered satisfactory. It is not intended as a substitute for experimental measurements of heat of combustion. Table 1 shows a summary for the range of each variable used in developing the correlation. The mean value and an estimate of its distribution about the mean, namely the standard deviation, is shown. This indicates, for example, that the mean density for all fuels used in developing the correlation was 779.3 kg/m3 and that two thirds of the samples had a density between 721.4 and 837.1 kg/m3, that is, plus or minus one standard deviation. The correlation is most accurate when the values of the variables used are within one standard deviation of the mean, but is useful up to two standard deviations of the mean. The use of this correlation may be applicable to other hydrocarbon distillates and pure hydrocarbons; however, only limited data on non-aviation fuels over the entire range of the variables were included in the correlation.
Note 4—The procedures for the experimental determination of the gross and net heats of combustion are described in Test Methods D 240 and D 4809.
The calorimetric methods cited in Note 4 measure gross heat of combustion. However, net heat is used in aircraft calculations because all combustion products are in the gaseous state. This calculation method is based on net heat, but a correction is required for condensed sulfur compounds.
TABLE 1 Mean and Standard Deviation of the Variables
Variable
Mean
Standard
Deviation
Aromatics, volume %
13.5
23.9
Density, kg/m3 [°API]
779.3 [50.0]
58.0 [13.5]
Volatility, °C [°F]
171.11 [340]
57.2 [103]
Heat of combustion, MJ/kg [Btu/lb]
43.421 [18 668]
0.862 [371]
1. Scope
1.1 This test method covers the estimation of the net heat of combustion (megajoules per kilogram or [Btu per pound]) of aviation gasolines and aircraft turbine and jet engine fuels in the range from 40.19 to 44.73 megajoules per kilogram or [17 280 to 19 230 Btu per pound]. The precision for estimation of the net heat of combustion outside this range has not been determined for this test method.
1.2 This test method is purely empirical and is applicable to liquid hydrocarbon fuels that conform to the specifications for aviation gasolines or aircraft turbine and jet engine fuels of grades Jet A, Jet A-1, Jet B, JP-4, JP-5, JP-7, and JP-8.
Note 1—The experimental data on heat of combustion from which the Test Method D 3338 correlation was devised was obtained by a precision method similar to Test Method D 4809.
Note 2—The estimation of the net heat of combustion of a hydrocarbon fuel is justifiable only when the fuel belongs to a well-defined class for which a relation between heat of combustion and aromatic and sulfur contents, density, and distillation range of the fuel has been derived from accurate experimental measurements on representative samples of that class. Even in this case, the possibility that the estimates may be in error by large amounts for individual fuels should be recognized. The fuels used to establish the correlation presented in this method are defined as follows:
Fuels:
Aviation gasoline—Grades 100/130 and 115/145 (1, 2)
Kerosines, alkylates, and special WADC fuels (3)
Pure hydrocarbons—paraffins, naphthenes, and aromatics (4)
Fuels for which data were reported by the Coordinating Research Council (5).
Note 3—The property ranges used in this correlation are as follows:
Aromatics—from 0 to 100 mass %
API Gravity—from [25.7 to 81.2°API]
Volatility—from [160 to 540°F], average boiling point
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.3.1 Although the test method permits the calculation of net heat of combustion in either SI or inch-pound units, SI units are the preferred units.
1.3.2 The net heat of combustion can also be estimated in inch-pound units by Test Method D 1405 or in SI units by Test Method D 4529. Test Method D 1405 requires calculation of one of four equations dependent on the fuel type with a precision equivalent to that of this test method. Test Method D 4529 requires calculation of a single equation for all aviation fuels with a precision equivalent to that of this test method. Unlike Test Method D 1405 and D 4529, Test Method D 3338 does not require the use of aniline point.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents (purchase separately)
Energy Institute Standard
IP436 Test Method for Determination of Aromatic Hydrocarbon Types in Aviation Fuels and Petroleum Distillates--High Performance Liquid Chromatography Method with Refractive Index Detection
ASTM Standards
D86 Test Method for Distillation of Petroleum Products at Atmospheric Pressure
D240 Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter
D1266 Test Method for Sulfur in Petroleum Products (Lamp Method)
D1298 Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method
D1319 Test Method for Hydrocarbon Types in Liquid Petroleum Products by Fluorescent Indicator Adsorption
D1405 Test Method for Estimation of Net Heat of Combustion of Aviation Fuels
D1552 Test Method for Sulfur in Petroleum Products (High-Temperature Method)
D2622 Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-ray Fluorescence Spectrometry
D2887 Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography
D3120 Test Method for Trace Quantities of Sulfur in Light Liquid Petroleum Hydrocarbons by Oxidative Microcoulometry
D4052 Test Method for Density and Relative Density of Liquids by Digital Density Meter
D4294 Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry
D4529 Test Method for Estimation of Net Heat of Combustion of Aviation Fuels
D4809 Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method)
D5453 Test Method for Determination of Total Sulfur in Light Hydrocarbons, Spark Ignition Engine Fuel, Diesel Engine Fuel, and Engine Oil by Ultraviolet Fluorescence
D6379 Test Method for Determination of Aromatic Hydrocarbon Types in Aviation Fuels and Petroleum Distillates--High Performance Liquid Chromatography Method with Refractive Index Detection
Index Terms
aviation fuel; gross heat of combustion; heat energy; heat of combustion; heating tests; net heat of combustion; Aviation fuels (heat of combustion); Combustion--petroleum products; Heating tests--petroleum products;

  詳情請咨詢
  防火資源網-阻燃防火測試中心
  電話:(+86)0592-5056213
  傳真:(+86)0592-5105807
  郵件:firetest@firetc.com

凡注明"防火資源網"的所有作品,由<防火資源網>整理編輯,任何組織未經<防火資源網>及其擁有者授權,不得復制、轉載、摘編或利用其它方式應用于任何商業行為。

 
 
[ 防火測試中心搜索 ]  [ ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關閉窗口 ]  [ 返回頂部 ]

 

 
 
推薦防火測試
推薦圖文
點擊排行
 
 
網站首頁 | 廣告服務 | 關于我們 | 聯系方式 | 服務協議 | 版權聲明 | 網站地圖 | 友情鏈接 | 網站留言 | 舊版本 | 閩ICP備09009213號
?2019-2021 FIRETC.COM All Rights Reserved ? 備案號:在線客服 點擊QQ交談/留言 點擊QQ交談/留言
主站蜘蛛池模板: 色妞色视频一区二区三区四区 | 亚洲成av人片天堂网无码 | 无码人妻久久一区二区三区免费丨 | 亚洲成人动漫在线播放 | 国产成人综合色在线观看网 | 日韩欧美啪啪一中文字暮 | 被群CAO的合不拢腿H两根一起 | 亚洲精品一区二区三区免 | 精品无码国产自产拍在线 | 日本真人做人试看60分钟 | 精品无码一区二区久久 | 欧美成人精精品一区二区三区 | 亚洲精品国产成人精品 | 麻豆1区2产品乱码芒果白狼在线 | 亚洲另类国产欧美一区二区一区二区日韩国产精品 | 无码a级免费黄色视频 | 国产日韩在线播放成人 | 精品欧美一区二区三区成人片在线 | 美女制服丝袜一区二区三区 | 亚瑟AV亚洲精品一区二区 | 动漫成年美女黄漫网站 | 在线看欧美日韩中文字幕 | 自拍无码中文少妇 | 91狠狠色丁香婷婷综合久久 | 在线观看国产久青草 | 国产三级久久精品三级 | 亚洲无码在线影院 | 日本老熟妇乱 | 亚洲国产精品热久久 | 午夜裸体性播放 | 无码精品加勒比视频 | 91久久福利国产成人精品 | 人妻中文一区二区三区 | 久久婷婷成人综合色 | 亚洲国产欧美日韩精品一区二 | 午夜福利欧美日本一区二区 | 久久亚洲国产成人精品无码区 | 国产日韩一区二区三区免费高清 | 精品国产一区二区三区久久影院 | 亚洲国产精品无码久久九九大片 | 日韩不卡在线播放 |