av免费在线-av免费在线播放网址-av免费在线观看的网址-av免费在线观看一区二区三区-av喷水高潮喷水在线观看-av喷水高潮喷水在线观看c

阻燃防火材料-網上貿易平臺 | | WAP瀏覽
服務熱線:4006555305
當前位置: 首頁 » 防火測試中心 » 各國標準法規 » 美國 » 正文

ASTM E2060無機廢物固化/穩定用煤燃燒產品使用標準指南

放大字體  縮小字體 發布日期:2012-02-08   瀏覽次數:51  分享到: 分享到騰訊微博
ASTM E2060無機廢物固化/穩定用煤燃燒產品使用標準指南
ASTM E2060  Standard Guide for Use of Coal Combustion Products for Solidification/Stabilization of Inorganic Wastes
ASTM E2060無機廢物固化/穩定用煤燃燒產品使用標準指南
1. Scope
1.1 This guide covers methods for selection and application of coal combustion products (CCPs) for use in the chemical stabilization of trace elements in wastes and wastewater. These elements include, but are not limited to, arsenic, barium, boron, cadmium, chromium, cobalt, lead, molybdenum, nickel, selenium, vanadium, and zinc. Chemical stabilization may be accompanied by solidification of the waste treated. Solidification is not a requirement for the stabilization of many trace elements, but does offer advantages in waste handling and in reduced permeability of the stabilized waste.
1.1.1 Solidification is an important factor in treatment of wastes and especially wastewaters. Solidification/Stabilization (S/S) technology is often used to treat wastes containing free liquids. This guide addresses the use of CCPs as a stabilizing agent without the addition of other materials; however, stabilization or chemical fixation may also be achieved by using combinations of CCPs and other products such as lime, lime kiln dust, cement kiln dust, cement, and others. CCPs used alone or in combination with other reagents promote stabilization of many inorganic constituents through a variety of mechanisms. These mechanisms include precipitation as carbonates, silicates, sulfates, and so forth; microencapsulation of the waste particles through pozzolanic reactions; formation of metal precipitates; and formation of hydrated phases (). Long-term performance of the stabilized waste is an issue that must be addressed in considering any S/S technology. In this guide, several tests are recommended to aid in evaluating the long-term performance of the stabilized wastes.
1.2 The CCPs that are suited to this application include fly ash, spent dry scrubber sorbents, and certain advanced sulfur control by-products from processes such as duct injection and fluidized-bed combustion (FBC).
1.3 The wastes or wastewater, or both, containing the problematic inorganic species will likely be highly variable, so the chemical characteristics of the waste or wastewater to be treated must be determined and considered in the selection and application of any stabilizing agent, including CCPs. In any waste stabilization process, laboratory-scale tests for compatibility between the candidate waste or wastewater for stabilization with one or more selected CCPs and final waste stability are recommended prior to full-scale application of the stabilizing agent.
1.4 This guide does not intend to recommend full-scale processes or procedures for waste stabilization. Full-scale processes should be designed and carried out by qualified scientists, engineers, and environmental professionals. It is recommended that stabilized materials generated at the full-scale stabilization site be subjected to testing to verify laboratory test results.
1.5 The utilization of CCPs under this guide is a component of a pollution prevention program; Guide E 1609 describes pollution prevention activities in more detail. Utilization of CCPs in this manner conserves land, natural resources, and energy.
1.6 This guide applies only to CCPs produced primarily from the combustion of coal. It does not apply to ash or other combustion products derived from the burning of waste; municipal, industrial, or commercial garbage; sewage sludge or other refuse, or both; derived fuels; wood waste products; rice hulls; agricultural waste; or other noncoal fuels.
1.7 Regulations governing the use of CCPs vary by state. The user of this guide has the responsibility to determine and comply with applicable regulations.
1.8 It is recommended that work performed under this guide be designed and carried out by qualified scientists, engineers, and environmental professionals.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents (purchase separately)
ASTM Standards
C114 Test Methods for Chemical Analysis of Hydraulic Cement
C311 Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete
C400 Test Methods for Quicklime and Hydrated Lime for Neutralization of Waste Acid
D75 Practice for Sampling Aggregates
D422 Test Method for Particle-Size Analysis of Soils
D558 Test Methods for Moisture-Density (Unit Weight) Relations of Soil-Cement Mixtures
D653 Terminology Relating to Soil, Rock, and Contained Fluids
D1556 Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method
D1633 Test Methods for Compressive Strength of Molded Soil-Cement Cylinders
D1635 Test Method for Flexural Strength of Soil-Cement Using Simple Beam with Third-Point Loading
D2166 Test Method for Unconfined Compressive Strength of Cohesive Soil
D2216 Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
D2922 Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)
D2937 Test Method for Density of Soil in Place by the Drive-Cylinder Method
D3441 Test Method for Mechanical Cone Penetration Tests of Soil
D3877 Test Methods for One-Dimensional Expansion, Shrinkage, and Uplift Pressure of Soil-Lime Mixtures
D3987 Test Method for Shake Extraction of Solid Waste with Water
D4318 Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
D4842 Test Method for Determining the Resistance of Solid Wastes to Freezing and Thawing
D4843 Test Method for Wetting and Drying Test of Solid Wastes
D4972 Test Method for pH of Soils
D5084 Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter
D5239 Practice for Characterizing Fly Ash for Use in Soil Stabilization
E1609 Guide for Development and Implementation of a Pollution Prevention Program
Index Terms


  詳情請咨詢
  防火資源網-阻燃防火測試中心
  電話:(+86)0592-5056213
  傳真:(+86)0592-5105807
  郵件:firetest@firetc.com

凡注明"防火資源網"的所有作品,由<防火資源網>整理編輯,任何組織未經<防火資源網>及其擁有者授權,不得復制、轉載、摘編或利用其它方式應用于任何商業行為。

 
 
[ 防火測試中心搜索 ]  [ ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關閉窗口 ]  [ 返回頂部 ]

 

 
 
推薦防火測試
推薦圖文
點擊排行
 
 
網站首頁 | 廣告服務 | 關于我們 | 聯系方式 | 服務協議 | 版權聲明 | 網站地圖 | 友情鏈接 | 網站留言 | 舊版本 | 閩ICP備09009213號
?2019-2021 FIRETC.COM All Rights Reserved ? 備案號:閩ICP備09009213號-1在線客服 點擊QQ交談/留言 點擊QQ交談/留言
主站蜘蛛池模板: 亚洲东京热国产精品无码视频 | 国产精品一区二区午夜久久 | 国产成人无码一区二区在线观看 | 无码人妻久久久一区二区三 | av免费无码天堂在线 | 台湾成人影院 | 国产精品无码一区二区三区电影 | 国内自拍视频一区二区三区 | 91人妻人人澡人人爽人人精品 | 国产成人a视频高清在线观看 | 精品无码国产一区二区三区51安 | 五月婷婷六月丁香综合 | 一级免费视频片高清无码 | 一本大道香蕉青青久久 | 亚洲中文不卡电影在线 | 午夜精品久久久久久中宇 | 国产成人av一区二区三区无码 | 亚洲成年人免费网站 | 精品入口菠萝 | 四虎影院211风情影院 | 一区二区三区欧美在线 | 麻豆tv入口在线看 | 国产喷水1区2区3区咪咪爱av | 自拍视频国产三级 | 久久精品久久精品国产大片无码 | 人妻精品少妇二区 | 精国产品一区二区三区a片 精精国产xxxx视频在线 | 国产午夜片无码区在线播放 | 国产成人自拍视频在线 | 精品无人乱码一区二区三区的优势 | 给我一个可以看片的免费 | 欧美日韩精品一区二区另类 | 换脸国产AV一区二区三区 | 亚洲AV无码一区二区三区 | 日韩欧美精品综合久久 | 亚洲中文无码一级片 | 欧美日韩激情在线一区二区三 | 欧美一区二区三区久久综合 | 精品人妻大屁股白浆无码下载 | 亚洲国产aaa毛片无费看 | 国产精品日韩av |